

Ionospheric Mappers

Radar map of equatorial electron density variations at 3-meter scale lengths. These irregularities disrupt communication and navigation systems.

GODDARD SPACE FLIGHT CENTER

IM Mission Goals and Objectives

The integrated science and space weather goals for the IM mission are:

- Global characterization and understanding of the Earth's ionosphere and upper atmosphere and its connection to the Sun, solar wind, and magnetosphere
- Major improvements of ionospheric and thermospheric specification models
- Improvement of forecast and nowcast accuracy
- Establishment of a quantitative baseline for Sun-climate studies

IM Major Science Questions

The IM Mission will address three main areas of space weather effects:

Human Radiation Exposure

• How do global temporal and spatial distributions of energetic particle precipitation relate to the magnetosphere and solar wind drivers?

Impacts on Space Systems and Technology

- What are the sources, dynamics, and evolution of plasma instabilities and small-scale irregularities that create HF and GPS scintillations?
- How does EUV variability and geomagnetic storms drive plasma density behavior, including those at high, mid, and low latitudes?
- How do solar heating and magnetospheric forces create neutral density variations and cellular structure and how do they evolve?
- How are ionospheric currents, including field-aligned current closure, created?

Global Climate Change

• What is the best way to establish highly-accurate global parameters for Sun-climate baseline measurements and how does the ionosphere/thermosphere system reflect long-term Sun-climate variability?

GODDARD SPACE FLIGHT CENTER

IM Approach/Methodology

One problem with obtaining data from a single satellite is that average conditions over a long time span smooth out variations and mask abrupt, large-scale spatial changes.

The approach of the IM mission is to gather simultaneous, global data of key space weather-related ionospheric parameters using multiple, identical spacecraft distributed in latitude and local time. Data from these instruments will be used to:

- Create space-time maps of the ionosphere including neutral density and drag effects, plasma density, irregularities, impulsive radiation input, GPS and HF scintillations, currents, winds, and plasma drifts
- Measure large-scale variations and auroral energy input
- Develop physical models to predict space weather parameters
- Dramatically improve both empirical and predictive ionospheric models

Both in-situ and imaging platforms are needed to achieve these goals.

LIW'S

IM Concept Evolution

Single Satellite

- Event studies, exploration
- Provide average global conditions
- Example: **Dynamics Explorer-2**

Cluster of Satellites

- Event studies that separate space and time
- Provide refined average global conditions
- Example: Geospace Electrodynamics Connections

Global Network of Satellites

- Global coverage with simultaneous observations at all latitudes and local times
- Uncovers global-scale processes, coupling to other regions; provides event studies in "big picture"
- Enable tomography and other RF experiments (e.g., GPS occultations)
- Example: **Ionospheric Mappers**

GODDARD SPACE FLIGHT CENTER

8/22/00

Ionospheric Mappers

In situ satellites at 450 km circular orbits

6 Polar orbiting satellites

2 Low inclination (e.g., 30) satellites

- Figure shows all 8 satellites in one hemisphere.
- "Station Keeping" can be used to maintain equal spacing (e.g., 4 satellites on dayside, 4 on nightside; all 6 polar satellites crossing polar regions together, etc.).

GODDARD SPACE FLIGHT CENTER

IM In-Situ Mission Characteristics

Low Inclination Elements

- Launch from Eastern Range in 2009
- Small-class launch vehicle with dual payload adapter
- Low-inclination, 450-km circular orbit
- 2-year mission design life with 5 years of on-orbit operations
- Two identical small three-axis stabilized spacecraft in same orbit plane
- Unique spacecraft development
- Five *in-situ* instrument packages per spacecraft with high TRL number
- Several ground stations

High Inclination Elements

- Launch from Western Range in 2009
- Medium-class launch vehicle with satellite dispenser
- 450-km circular polar orbits
- Six orbit planes, 30 degrees apart, is nominal configuration
- 2-year mission design life with 5 years of onorbit operations
- Six identical small three-axis stabilized spacecraft (constellation)
- Unique spacecraft development
- Five *in-situ* instrument packages per spacecraft with high TRL number
- All instruments operating near 100% duty cycle

GODDARD SPACE FLIGHT CENTER

• Polar ground stations